首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   18篇
地质学   9篇
海洋学   10篇
天文学   7篇
自然地理   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2002年   4篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
41.
A new buckling restrained braced frame system is proposed for reinforced concrete building structures, which is featured by the zigzag configuration of the braces and the corresponding connection details. The connection details tend to separate the vertical and horizontal components of force imposed by the braces to be resisted by independent structural components to make the behavior of the connection easier to estimate and control. The performance of the brace connection details was evaluated through cyclic load testing on 1/2‐scale subassemblies of the proposed system, each of which consisted of a reinforced concrete part and a set of buckling restrained braces. To simplify the test control, the specimens were rotated 90° in the test and were loaded by two displacement controlled actuators. The test results show that the normal and the shear resistance of the gusset plate connection are essentially independent of each other. However, the rotation of the gusset plate with respect to the beam‐to‐column joint may result in nonuniform force distribution of the anchor bolts, the primary resistance for tensile force. At the same time, such rotation may also subject the concrete corbels, the primary shear resistance, to unfavorable tensile force. In addition, it is also confirmed that the buckling restrained braces performed well in the proposed system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
42.
Abstract– The oxygen isotopic microdistributions within melilite measured using in situ secondary ion mass spectrometry correspond to the chemical zoning profiles in single melilite crystals of a fluffy type A Ca‐Al‐rich inclusions (CAIs) of reduced CV3 Vigarano meteorite. The melilite crystals show chemical reverse zoning within an individual single crystal from the åkermanite‐rich core to the åkermanite‐poor rim. The composition changes continuously with the crystal growth. The zoning structures suggest that the melilite grew in a hot nebular gas by condensation with decreasing pressure. The oxygen isotopic composition of melilite also changes continuously from 16O‐poor to 16O‐rich with the crystal growth. These observations suggest that the melilite condensation proceeded with change consistent with an astrophysical setting around the inner edge of a protoplanetary disk where both 16O‐rich solar coronal gas and 16O‐poor dense protoplanetary disk gas could coexist. Fluffy type A CAIs could have been formed around the inner edge of the protoplanetary disk surrounding the early sun.  相似文献   
43.
The study of standing accretion shock instability (SASI) in core-collapse supernova cores has been done with three-dimensional (3D) computer simulations. Rotations with various perturbations were introduced from outer boundary of an initial steady accreting flow. We found that one or two armed spiral accreting flow onto the proto-neutron star (PNS) is formed inside the shock wave depending on perturbations. The linear growth of spiral modes are clearly diagnosed by the mode analysis of the shock surface, and the lower m modes grow quickly in the linear regime.  相似文献   
44.
We investigated the sea level response of the Japan Sea to changes in atmospheric pressure using barotropic shallow water models driven by idealized synoptic pressure forcing. The regional response lags behind the synoptic pressure forcing because the adjustment is slowly established by water exchange through narrow, shallow straits. The sea level response of the realistic Japan Sea to the idealized forcing varies with geographical location and shows zonally asymmetric variations in amplitude and phase. The simulated response is in good agreement with the observed response of sea level recorded at Japanese coastal tide gauges. The results of a simple one-dimensional model indicate that the zonally asymmetric pattern, with an eastward-propagating pressure system, is essentially caused by bottom friction in shallow straits. This asymmetry arises if the typical wavelength of the synoptic pressure system is slightly larger than the spatial scale of the Japan Sea.  相似文献   
45.
The fall-rate of the T-5 expendable bathythermograph (XBT) produced by Tsurumi Seiki (TSK) Co., Ltd and that by Sippican Inc., are intercompared by a series of contemporaneous and colocated measurements with conductivity-temperature-depth (CTD) profilers. It is confirmed that the fall-rates of the two manufacturers' T-5 differ by about 5 percent, despite the fact that they had been believed to be identical for many years. The cause of the difference is discussed on the basis of a detailed cross-examination of the two T-5 models. It is found for the first time that the two models are different in several respects. The manufacturer's fall-rate equation is only applicable to the Sippican T-5, for which Boyd and Linzell's (1993) equation seems to be slightly more accurate. Kizu et al.'s (2005) equation gives a clearly less biased depth than the manufacturers' equation for the TSK T-5. It is also found that the fall-rates of both T-5 models are dependent on water temperature, perhaps because of viscosity. The temperature-dependency of the fall-rate of the TSK T-5 is larger than that of the Sippican T-5.  相似文献   
46.
The energy dissipation capacity of a structure is a very important index that indicates the structural performance in energy‐based seismic design. This index depends greatly on the structural components that form the whole system. Owing to the wide use of the strong‐column weak‐beam strength hierarchy where steel beams dissipate the majority of earthquake input energy to the structures, it is necessary to evaluate the energy dissipation capacity of the beams. Under cyclic loadings such as seismic effects, the damage of the beams accumulates. Therefore, loading history is known to be the most pivotal factor influencing the deformation capacity and energy dissipation capacity of the beams. Seismic loadings with significantly different characteristics are applied to structural beams during different types of earthquakes and there is no unique appropriate loading protocol that can represent all types of seismic loadings. This paper focuses on the effects of various loading histories on the deformation capacity and energy dissipation capacity of the beams. Cyclic loading tests of steel beams were performed. In addition, some experimental results from published tests were also collected to form a database. This database was used to evaluate the energy dissipation capacity of steel beams suffering from ductile fracture under various loading histories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
47.
Experiments using laser-heated diamond anvil cells combined with synchrotron X-ray diffraction and SEM–EDS chemical analyses have confirmed the existence of a complete solid solution in the MgSiO3–MnSiO3 perovskite system at high pressure and high temperature. The (Mg, Mn)SiO3 perovskite produced is orthorhombic, and a linear relationship between the unit cell parameters of this perovskite and the proportion of MnSiO3 components incorporated seems to obey Vegard’s rule at about 50 GPa. The orthorhombic distortion, judged from the axial ratios of a/b and \( \sqrt{2}\,a/c, \) monotonically decreases from MgSiO3 to MnSiO3 perovskite at about 50 GPa. The orthorhombic distortion in (Mg0.5, Mn0.5)SiO3 perovskite is almost unchanged with increasing pressure from 30 to 50 GPa. On the other hand, that distortion in (Mg0.9, Mn0.1)SiO3 perovskite increases with pressure. (Mg, Mn)SiO3 perovskite incorporating less than 10 mol% of MnSiO3 component is quenchable. A value of the bulk modulus of 256(2) GPa with a fixed first pressure derivative of four is obtained for (Mg0.9, Mn0.1)SiO3. MnSiO3 is the first chemical component confirmed to form a complete solid solution with MgSiO3 perovskite at the PT conditions present in the lower mantle.  相似文献   
48.
49.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
50.
Baroclinic variations of the southward flow in the interior region of the North Pacific subtropical gyre are presented with five hydrographic sections from San Francisco to near Japan during 2004–2006. The volume transport averaged temperature of the interior flow, which varies vigorously by a maximum of 0.8°C, is negatively correlated with the transport in the layer of density 24.5–26.5σ θ, associated with changes in the vertical current structure. Transport variation in this density layer is thus mainly responsible for the thermal impact of the interior flow on the heat transport of the subtropical gyre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号